

protfasta - the simple FASTA parser for proteins

protfasta is a simple, robust parser for working with FASTA files. It is pure python and has no external package dependencies other than Python language modules.

It contains two distinct components:

	A Python API for reading and writing FASTA files, which includes a collection of santization functions. This makes it easy to write code that reads/writes FASTA files.

	A command line tool (pfasta) that allows manipulation of FASTA files directly from the command line.

This documentation provides an overeview of both components.

Why did you build protfasta? Don’t you have better things to do with your time?

This is a reasonable question…

Working with protein-based FASTA files is at the heart of a lot of what the Holehouse lab [http://holehouse.wustl.edu/] does. We had previously used a few different existing parsers but had found limitations with respect to certain features. Part of this came from the fact that many FASTA parsers can work with nucleotide or protein data. Given our bread and butter is protein sequences, we decided to build a parser explicitly for working with proteins. We also wanted the ability to deal with FASTA files with duplicate entries. Not necessarily because this is ‘good’, but for processing reasons being able to deal with this in-code is easier than having to sanitize ahead of time.

We built pfasta as a compact tool for working with FASTA files at the command-line level. In particular, the ability to filter FASTA files by sequence length, correct/remove sequence with invalid amino acids, and do various other things lends pfasta as a useful first tool in our informatics pipelines.

Will protfasta work with nucleotide-based FASTA files?

In principle yes, but none of our testing suites are set up to rigerously explore this. However, there’s no reason it shouldn’t, although it may be less efficient that some other tools such as the excellent pyfaidx [https://pypi.org/project/pyfaidx/].

Bugs and help

If you find any bugs or have feature requests please raise an issue on our Github page [https://github.com/holehouse-lab/protfasta/]. protfasta uses a continous integration suite for the main package, and pfasta has a set of local tests that are run upon updates.

A note: protfasta was built to work with Python 3.7 or higher. However, it does - in principle, work with Python 3.6 but there may be some oddities. We strongly recommend using 3.7.6 or higher.

How to cite protfasta

For now please just cite the Github repository [https://github.com/holehouse-lab/protfasta/] (including the date accessed). We are planning on putting out a short biorxiv paper (not submitting to a journal) for a DOI-ed reference, at which point this documentation will be updated accordingly.

Contents:

	Installation

	pfasta
	Usage

	Examples
	read_fasta examples

	write_fasta examples

	read_fasta
	Documentation

	write_fasta
	Documentation

Installation

protfasta has been tested on Linux and macOS. It should also work on Windows but we haven’t tested it there yet.

protfasta can be downloaded and installed directly from PyPI using pip:

pip install protfasta

If this has worked, the pfasta tool should be available from the command-line

pfasta --help

And you’re done. This also means you can now import and use protfasta in your Python workflow.

pfasta

pfasta is a command-line tool for working with FASTA files to filter and sanitize them based on various criterion. This includes:

	Filtering out sequences that contain invalid amino acids

	Take sequences that contain invalid characters and replace/fix them

	Filter a set of sequences by a maximum and/or minimum sequence length

	Sub-sample a set of sequences for building a reduced set of randomly selected sequences

At it’s basline, pfasta takes a single sequence file as input and writes a new output sequence. There are a series of flags that can be applied, as outlined in the Usage section below.

Usage

pfasta <flags> filename.fasta

-o <output filename> (default: output.fasta)
 Define the name of the output FASAT file

--non-unique-header
 Flag that, if provided allows multiple FASTA records to have identical headers

--duplicate-record (default: fail)
 Flag that provides a keyword that defines how duplicate FASTA records are dealt with.
 Options are:
 fail : throws an exception and exits the parsing
 ignore : duplicate records are retained
 remove : duplicate records are removed

--duplicate-sequence (default: fail)
 Flag that provides a keyword that defines how duplicate sequences are dealt with.
 Options are:
 fail : throws an exception and exits the parsing
 ignore : duplicate sequences are retained
 remove : duplicate sequences are removed

--invalid-sequence (default: fail)
 Flag that provides a keyword that defines how invalid sequences are dealt with.
 Options are:
 fail : throws an exception and exits the parsing
 ignore : invalid sequences are retained
 remove : invalid sequences are removed
 convert-all : invalid residues are converted according to the standard conversion table
 (shown below) but if OTHER invalid residues are found an exception is raised
 B->N, U->C, X->G, Z->Q, '*'->'', '-'->''
 convert-res : invalid residues are converted according to the standard conversion table
 with the exception of sequence-alignment gaps ('-')
 convert-all-ignore : invalid residues are converted according to the standard conversion table,
 and if OTHER invalid residues are found they are ignored
 convert-res-ignore : invalid residues are converted according to the standard conversion table,
 with the exception of the sequence-aligment gap ('-') character, but
 if OTHER invalid residues are found they are ignored

--number-lines (default: 60)
 Flag that defines the number of lines in the output FASTA file

--shortest-seq-lines (default: None)
 Flag that defines a filter that sets the shortest sequence returned

--longest-seq-lines (default: None)
 Flag that defines a filter that sets the longest sequence returned

--random-subsample (default: None)
 Flag that defines the number of randomly sub-sampled sequences. Allows a test FASTA file to be
 generated as a sub-set for testing analysis pipelines

--print-statistics
 Flag that, if provided, means statistics about the FINAL set of sequences written

--no-outputfile
 Flag that, if provided, means NO outputfile is generated.

--silent
 Flag that, if provided, means pfasta generates ZERO output to STDOUT

Examples

It’s often easies to see how to use code through some well-worked examples. Here we provide some simple examples that illustrate how protfasta can be used to read and write FASTA files.

read_fasta examples

Some possible exampls of reading FASTA files using protfasta:

Example 1: Simple read in FASTA file

import protfasta

sequences = protfasta.read_fasta('inputfile.fasta')

Example 2: Simple read in FASTA file and ignore duplicate FASTA records and return a nested-list of residues

import protfasta

sequences = protfasta.read_fasta('inputfile.fasta',
 expect_unique_header=False,
 return_list=True,
 duplicate_record_action='ignore')

Example 3: Read in FASTA file and correct invalid residues using standard error correction dictionary

import protfasta

sequences = protfasta.read_fasta('inputfile.fasta',
 invalid_sequence_action='convert')

Example 4: Read in FASTA file and correct invalid residues using a custom dictionary

import protfasta

CD = {'U':'G', '-':''}
sequences = protfasta.read_fasta('inputfile.fasta',
 invalid_sequence_action='convert',
 correction_dictionary=CD)

Example 5: Read in FASTA file quickly without error checking
By default **protfasta performs a bunch of sanity checking. In general this probably doesn’t need to be done every time if you KNOW
a file is safe. To cancel any sanity checking and read in at maximum efficiency the following options can be provided:

import protfasta

sequences = protfasta.read_fasta('inputfile.fasta',
 invalid_sequence_action='ignore',
 duplicate_record_action='ignore',
 duplicate_sequence_action='ignore',
 expect_unique_header=False)

write_fasta examples

input example using a sequence dictionary
import protfasta

sequence_in = {'seq1': 'MEEPQSDPSVEPPLS', 'seq2': 'DEAPRMPEAAPPVAPA'}
protfasta.write_fasta(sequence_in, 'example.fasta')

input example using a sequence list
import protfasta

sequence_in = [['seq1','MEEPQSDPSVEPPLS'], ['seq2', 'DEAPRMPEAAPPVAPA']]
protfasta.write_fasta(sequence_in, 'example.fasta')

read_fasta

read_fasta is a one-stop-shop for reading in FASTA files! Customizable keywords allow a variety of sanitizing functions which include:

	Ignore, remove, or convert sequences with invalid amino acid characters (B/U/X/*/-)

	Ignore or remove duplicate sequences or duplicate FASTA records

	Alternatively, allow duplicate sequences, headers, and FASTA records (something most other parsers do not)

	Arbitrary conversion of amino acids via a customizable correction_dictionary

Once parsed, read_fasta returns either a dictionary of header-to-sequence values or a nested list, where each sub-list contains two elements (header, sequence).

For usage examples see the Examples page. Full documentation is shown below.

Documentation

	
protfasta.read_fasta(filename, expect_unique_header=True, header_parser=None, check_header_parser=True, duplicate_sequence_action='ignore', duplicate_record_action='fail', invalid_sequence_action='fail', alignment=False, return_list=False, output_filename=None, correction_dictionary=None, verbose=False)

	read_fasta is the main one of of only two user-facing functions associated with protfasta.
It is designed as a catch-all function for reading in a FASTA file, performing sanitization,
and returning a list or dictionary of sequences and their associated headers.

There are a number of parameters which can be included, but as one might expect the simplest
usage is just

>>> x = read_fasta(filename)

This will read in the file associated with filename and return a dictionary, where the keys
are the FASTA file headers and the values are the amino acid sequences associated with each.

Note that as of python 3.7 the order in which one adds items to a dictionary is guaranteed
to be the order in which they’re retrieved, so cycling through the resulting dictionary will
in fact allow you to cycle through in order.

In addition to this simple usage, there are a number of keywords which are described in depth
below and allow additional processing to be complete.

There is an order of options in which sanitization occurs:

	File is read in, custom headers are parsed, and unique headers are tested (if expect_unique = True)

	Check for duplicate records and respond appropriately (optional)

	Check for duplicate sequences and respond appropriately (optional)

	Invalid sequences dealt with (optional)

	Final set of sequences/headers written to a new FASTA file (optional)

	Dictionary/list returned to user.

Understanding there is a specific order is important when considering what options to
pass. If a set of options are incompatible, this will be caught before the file is read.

	Parameters

	
	expect_unique_header (bool) – [Default = True] Should the function expect each header to be unique? In general this is true for FASTA files,
but this is strictly not guarenteed. If this is set to True and a duplicate header is found
then this means an error will be thrown. If it’s set to false duplicate headers are dealt with,
although for this to work return_list must also be set to True. Note that this won’t happen
automatically to avoid the scenario where you expect a dictionary to return and actually get
a list.

	header_parser (function) – [Default = None] header_parser allows a user-defined function that will be fed the FASTA header and
whatever it returns will be used as the actual header as the files are parsed. This can be useful if you
know your FASTA header has a consistent format that you want to take advantage of. A function provided here MUST
(1) Take a single input argument (the header string) and (2) Return a single string.
When parsing this function the following test is applied, unless check_header_parser is set to false.

>>> return_string = header_parser('this test string should work')

Where return_string is tested to be a string. The function will show an exception if this test fails and check_header_parser is set to true.

	check_header_parser (bool) – [Default = True] Flag which - if set to false - will not test if the header_parser function returns a valid string.
This may lead to unexpected header values if the passed header_parser function is not well defined.

	duplicate_record_action ('ignore', 'fail', 'remove') – [Default = ‘fail’] Selector that determines how to deal with duplicate entries. Note that duplicate records refers to
entries in the fasta file where both the sequence and the header are identical. duplicate_record_action
is only relevant keyword when expect_unique_header is False.
Options are as follows:

	ignore - duplicate entries are allowed and ignored

	fail - duplicate entries cause parsing to fail and throw an exception

	remove - duplicate entries are removed, so there’s only one copy of any duplicates

	duplicate_sequence_action ('ignore', 'fail', 'remove') – [Default = ‘ignore’] Selector that determines how to deal with duplicate sequences. This completely ignores the header
and simply asks is two sequences are duplicated (or not).

	ignore - duplicate sequences are allowed and ignored

	fail - duplicate sequences cause parsing to fail and throw an exception

	remove - duplicate sequences are removed, so there’s only one copy of any duplicates (1st instance kept)

	invalid_sequence_action ('ignore', 'fail', 'remove', 'convert', 'convert-ignore', ``'convert-remove') – [Default = ‘fail’] Selector that determines how to deal with invalid sequences. If convert or convert-ignore are chosen, then conversion is completed with either the standard conversion table (shown under the correction_dictionary documentation) or with a custom conversion dictionary passed to correction_dictionary.
Options are as follows:

	ignore - invalid sequences are completely ignored

	fail - invalid sequence cause parsing to fail and throw an exception

	remove - invalid sequences are removed

	convert - invalid sequences are convert

	convert-ignore - invalid sequences are converted to valid sequences and any remaining invalid residues are ignored

	convert-remove - invalid sequences are converted to valid sequences where possible, and any remaining sequences with invalid residues are removed

	alignment (bool) – [Default = False] Flag which - if set to true - the Fasta file is treated as containing alignments (with dashes) such that ‘-’ characters are not
treated as invalid or converted. Works in concert with other flags.

	return_list (bool) – [Default = False] Flag that tells the function to return a list of 2-mer lists (where position 0 is the header
and position 1 the sequence). If you have duplicate identical headers which you want to deal with, this is required.

	output_filename (string) – [Default = None] If you are performing sanitization of the input file it is often useful to write out the
actual set of sequences you’ll be analyzing, so you have a persistent copy of this data
for further analysis later on. If you provide a string to output filename it will cause
a new FASTA file to be written with the final set of sequences returned.

	correction_dictionary (dict) – [Default = None] protfasta can automatically correct non-standard amino acids to standard amino acids using the
invalid_sequence keyword. This is useful if downstream analysis assumes/requires fully standard amino acids.
This is also useful for removing ‘-’ from aligned sequences. The standard conversions used are:

	B -> N

	U -> C

	X -> G

	Z -> Q

	" " -> <empty string> (i.e. a whitespace character)

	* -> <empty string>

	- -> <empty string>

However, if alternative definitions are needed they can be passed via the correction_dictionary keyword.
The correction_dictionary should be a dictionary that maps sequences characters to some other character (ideally
valid amino acid characters). In principle this could be used to perform arbitrary coarse-graining if a sequence…

	verbose (bool) – [Default = False] If set to True, protfasta will print out information as it works its way through reading and
parsing FASTA files. This can be useful for diagnosis.

	Returns

	
	Return type is *list or dict*

	If return_list is set to True then the function returns a list of lists. In each sublist contains two elements, where the first is the FASTA record header and the second the sequence. The order of FASTA records will match the order they were read in from the FASTA file. If return_list is False then the function returns a dictionary where the keys are the FASTA record heades and the values are the sequences. NOTE the order of keys will match the order that the FASTA file was read in IF the Python version is 3.7 or higher.

write_fasta

write_fasta allows for standardized FASTA files to be written to disk using a dictionary or a list of two-position lists. Note that it is possible to automatically write a FASTA file when reading in using the output_filename keyword in the function read_fasta.

Unlike read_fasta, write_fasta has a relatively limited set of options, which are documented below.

For usage examples see the Examples page.

Documentation

	
protfasta.write_fasta(fasta_data, filename, linelength=60, verbose=False, append_to_fasta=False)

	Simple function that takes a dictionary of key to sequence values
and writes out a valid FASTA file. No return type, but writes a file
to disk according to the location defined by the variable filename.

	Parameters

	
	fasta_data (dict or list) – If a dictionary is passed then keys must be identifiers and the values are
amino acid sequences. If a list is passed it must be a list where each element
contains two sub-elements, a header, and a sequence.

	filename (string) – Filename to write to. Should end with .fasta or .fa but this is not
enforced.

	linelength (int) – [Default = 60] Length of line to be written for sequence (note this does
not effect the header line. 60 is default used by UniProt. If set to 0, None or
False no line-length limit is used. Note linelength must be > 5.

	append_to_fasta (bool) – Whether to append to a fasta file that already exists. If this is set to True,
if the file does not exist, protfasta will create a new file. However, if the
file does exist, protfasta will simply append additional fasta entries to the
existing file.
Default=False

	Returns

	No return value is provided but a new FASTA file is written to disk

	Return type

	None

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 protfasta	

 	
 	
 protfasta.protfasta	

Index

 P
 | R
 | W

P

 	
 	protfasta (module), [1], [2]

 	
 	protfasta.protfasta (module)

R

 	
 	read_fasta() (in module protfasta)

W

 	
 	write_fasta() (in module protfasta)

protfasta.protfasta

protfasta - A simple but robuts FASTA parser explicitly for protein sequences.

This file handles the main event!

Question/comments/concerns? Raise an issue on github:
https://github.com/holehouse-lab/protfasta

Licensed under the MIT license.

Be kind to each other.

Functions

	read_fasta

	

	write_fasta

	

protfasta

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 protfasta - the simple FASTA parser for proteins

 		
 Installation

 		
 pfasta

 		
 Usage

 		
 Examples

 		
 read_fasta examples

 		
 write_fasta examples

 		
 read_fasta

 		
 Documentation

 		
 write_fasta

 		
 Documentation

_static/up.png

